SUPERTWIN publications
SUPERTWIN Deliverables
SUPERTWIN Publications
Press Releases
Events
This page contains the list of publications authored by members of the SUPERTWIN Consortium that are directly related to the project activity.
[1] D. Mogilevtsev and G. Ya. Slepyan, "Diffusive lossless energy and coherence transfer by noisy coupling," Phys. Rev. A, 94:012116, Jul 2016
[2] N. Vukovic, J. Radovanovic, V. Milanovic, and D. L. Boiko, "Analytical expression for Risken-Nummedal-Graham-Haken instability threshold in quantum cascade lasers," Opt. Express 24, 26911-26929 (2016)
[3] M. Unternährer, B. Bessire, L. Gasparini, D. Stoppa, and A. Stefanov, "Coincidence detection of spatially correlated photon pairs with a monolithic time-resolving detector array," Opt. Express 24, 28829-28841 (2016)
[4] Y. S. Teo, D. Mogilevtsev, A. Mikhalychev, J. Řeháček, and Z. Hradil, "Crystallizing highly-likely subspaces that contain an unknown quantum state of light,"Scientific Reports 6 (2016).
[5] N. Vukovic, J. Radovanovic, V. Milanovic, and D. L. Boiko. Multimode rngh instabilities of fabry-pérot cavity qcls: impact of diffusion.Optical and Quantum Electronics, 48(4):254, 2016.
[6] V. Reut, A. Mikhalychev, and D. Mogilevtsev, "Data-pattern tomography of entangled states," Phys. Rev. A, 95:012123, Jan 2017
[7] N. Lusardi, J. W. N. Los, R. B. M. Gourgues, G. Bulgarini, and A. Geraci, "Photon counting with photon number resolution through superconducting nanowires coupled to a multi-channel TDC in FPGA," Review of Scientific Instruments 88.3 (2017): 035003.
[8] D. Mogilevtsev, Y.S. Teo, J. Řeháček, Z. Hradil, J. Tiedau, R. Kruse, G. Harder, C. Silberhorn, and L. L. Sanchez-Soto. Extracting the physical sector of quantum states. New Journal of Physics 19 093008 (2017).
[9] N. Vukovic, J. Radovanovic, V. Milanovic, and D. L. Boiko. Low-Threshold RNGH Instabilities in Quantum Cascade Lasers. IEEE Journal of Selected Topics in Quantum Electronics, vol. 23, no. 6, pp. 1-16 (Nov.-Dec. 2017).
[10] S. Mukherjee, D. Mogilevtsev, G. Ya. Slepyan, T. H. Doherty, R. R. Thomson, and N. Korolkova. Dissipatively coupled waveguide networks for coherent diffusive photonics. Nature communications, 8(1), 1909 (2017).
[11] A. Mikhalychev, D. Mogilevtsev, G. Ya. Slepyan, I. Karuseichyk, G. Buchs, D. L. Boiko, and A. Boag. Synthesis of quantum antennas for shaping field correlations. Physical Review Applied 9, 024021 (2018).
[12] M. Unternährer, B. Bessire, L. Gasparini, M. Perenzoni, and A. Stefanov. Super-Resolution Quantum Imaging at the Heisenberg Limit.Optica 5, 1150-1154 (2018).
[13] J. Tiedau , V. S. Shchesnovich , D. Mogilevtsev , V. Ansari , G. Harder , T. J. Bartley, N. Korolkova and Ch. Silberhorn. Quantum state and mode profile tomography by the overlap. New J. Phys., 20:033003 (2018).
[14] D. Mogilevtsev, E. Garusov, M. V. Korolkov, V. N. Shatokhin, and S. B. Cavalcanti. Restoring the Heisenberg limit via collective non-Markovian dephasing. Phys. Rev. A, 98:042116, (Oct 2018).
[15] H. Zhang, C.-W. Shih, D. Martin, A. Caut, J.-F. Carlin, R. Butté and N. Grandjean. Short cavity InGaN-based laser diodes with cavity length below 300 μm. Semicond. Sci. Technol., 34:085005 (Jul 2019).
[16] M. Zarghami, L. Gasparini, M. Perenzoni and L. Pancheri. High dynamic range imaging with TDC-based CMOS SPAD arrays. Instruments, 3(3):38 (Aug 2019).
[17] A. B. Mikhalychev, B. Bessire, I. L. Karuseichyk, A. A. Sakovich, M. Unternährer, D. A. Lyakhov, D. L. Michels, A. Stefanov and D. Mogilevtsev. Efficiently reconstructing compound objects by quantum imaging with higher-order correlation functions. Commun Phys. 2, 134 (2019).
[18] I. Peshko, D. Mogilevtsev, I. Karuseichyk, A. Mikhalychev, A. P. Nizovtsev, G. Ya. Slepyan, and A. Boag. Quantum noise radar: superresolution with quantum antennas by accessing spatiotemporal correlations. Opt. Express 27, 29217-29231 (2019) .
[20] M. Zarghami, L. Gasparini, L. Parmesan, M. Moreno-Garcia, A. Stefanov, B. Bessire, M. Unternährer, and M. Perenzoni, Zarghami, Majid, et al. "A 32× 32-Pixel CMOS Imager for Quantum Optics With Per-SPAD TDC, 19.48% Fill-Factor in a 44.64-μm Pitch Reaching 1-MHz Observation Rate." IEEE Journal of Solid-State Circuits 55.10 (2020): 2819-2830.
[21] B. Eckmann, B. Bessire, M. Unternährer, L. Gasparini, M. Perenzoni, and A. Stefanov, "Characterization of space-momentum entangled photons with a time resolving CMOS SPAD array," Opt. Express 28, 31553-31571 (2020)
This project has received funding from the European Commission - H2020 research and innovation programme under grant agreement No 686731 (SUPERTWIN project)
Copyright 2016 - SUPERTWIN - All rights reserved